
© Fraunhofer IESE 

THE IMPACT OF VARIABILITY MECHANISMS ON 
SUSTAINABLE PRODUCT LINE CODE EVOLUTION

Thomas Patzke, Fraunhofer Institute Experimental Software Engineering (IESE)

 Research Group Variation Management

thomas.patzke@iese.fraunhofer.de

SE 2010, Paderborn
26.2.2010



© Fraunhofer IESE 

2

OVERVIEW

Background & Problem

Solution Ideas

Overall Contributions

Details

PL Complexity Measurement

Case Study

Conclusion



© Fraunhofer IESE

3

Background & Problem:
 Product Line Infrastructure Evolution

Main challenge: Keeping code reusable!

Product Line Infrastructure

Domain

Family Engineering

Product Line

 
Asset Base
(PL Code)

ProductProduct

 
Requirements

Cause: code decay due to 
- drift from changing scope
-

 

increasing internal complexity

 due to implemented changes

Our focus: Practical guide to

 well-behaved evolution of PL code 
so that its decay is avoided

Feedback

Application Engineering

reusability

time

Problem in practice*:

critical level

*Ricoh, POSCO, Bosch, Testo, John Deere, …



© Fraunhofer IESE

4

Towards a Solution (1/2)

The evolution problem has been addressed

for general systems and single SW systems, in theory and practice

But it has not been tackled for product lines

delta: genericity (common & variable parts)

We address these novel issues:

What makes product line code complex?

How can it be evolved well with ‘just enough’ effort?



© Fraunhofer IESE

5

Towards a Solution (2/2)

Code which is used as-is does not pose new challenges

because it is not variable, like single systems code

New challenges lie in adaptable code

variability mechanisms make it adaptable

Variability mechanisms make code more complex, which is unavoidable

but the unsystematic use of mechanisms makes code more complex
than necessary

Various types of variability mechanisms exist in practice and research

Our primary hypothesis:
Selecting the right combination of variability mechanisms
is the key factor for keeping product line code reusable



© Fraunhofer IESE

6

Solution: Product Line Implementation Process

PL Specs

Existing

 Code
Resulting

 Code

Coding
(Focussed on

 SW Developer)

ΔCplx

Variability

 Mechanisms

PL Evolution

 Scenarios

Selection

Modifi-

 
cation

Quality 
Assurance

Legend:

artefact

process

uses

iteration



© Fraunhofer IESE

7

Main Contributions to Applied Research
 in Product Line Engineering

Development of a method for preventing product line “code aging”, 
consisting of

a pattern language of variability mechanisms (novel in this depth):
Cloning, Cond. Exec./Compil., Polymorph., Partial Bdg., Aspect-Or., Frame Tech.

product line evolution scenarios (as yet unexplored)

a method core, consisting of these iterative phases:

selection (novelty: PL “code smells”)

modification (new: PL refactorings)

quality assurance (novelties: PL construction testing,
PL complexity measurement)

Validation of vital parts of the method in a case study

result: there is no silver bullet for PL implementation

Focus of 
this talk

PL Specs

Existing
Code

Resulting
Code

Coding
(Focussed on

SW Developer)

?Cplx

Variability
Mechanisms

PL Evolution
Scenarios

Selection

Modifi-
cation

Quality 
Assurance

Variability
Mechanisms

PL Evolution
Scenarios

Selection

Modifi-
cation

Quality 
Assurance



© Fraunhofer IESE

8

Product Line Complexity Measurement (1/2): GQM
 -

 
Goals and Questions

Goal-oriented approach (application of GQM method)

1.Sustainable PL 
Code Evolution

2. PL Code 
Complexity 
Adaptation

3. Size 
Reduction

4. Shape 
Alignment

5.Variability 
Emphasis

6. VarMgt 
Consistency

7. Reuse 
Efficiency

1.

 
Formulation of goals

Result: goal hierarchy of 7 goals

software developerfrom the viewpoint of the

variable partswith respect to

emphasizingfor the purpose of

code of software product linesAnalyze the

Q14: How many variable parts are visible at the module level? (How many should be?)

 
Q15: How many variable parts are visible module-internally? (How many should be?)

 
Q16: How many variable parts are indistinguishable from common code?

2.

 
Refinement of goals

 to questions

Result: 23 questions

excerpt for goal 5:

5.Variability 
Emphasis



© Fraunhofer IESE

9

Product Line Complexity Measurement (2/2)
 -

 
Metrics

3.

 
Refinement of questions to metrics

Result: metrics suite of 21 PL complexity metrics

excerpt for goal 5 / questions 14-16:

G Q Metric name Description

5 Variability emphasis

14 NVPrte Number of externally visible

 

variable parts

15 NVPrti Number of internally visible

 

variable parts

16 NVPrta Number of ambiguous

 

variable parts



© Fraunhofer IESE

10

Case Study (1/5): Setup

Development & evolution of product lines for
resource-constrained embedded systems (Wireless Sensor Nodes)

PL evolution over 6 steps,
covering different PL evolution types

using all variability mechanisms in
monocultures, plus “ideal” baseline
and “good enough” mechanism mix

 Step 0 SN 

TD DD ND

SN 

TD DD ND MD

SN 

TD DD ND MD TT

SN 

TD DD ND MD TT RD

SN 

TD DD ND MD TTRD VD

SN 

TD DD ND MD TT RD VD 

SN 

TD DD ND MD TTRD VD CA

Step 1

Step 2 Step 3

Step 4 Step 5

Step 6 Legend 

feature 
optional 
alternative 
evolved items 



© Fraunhofer IESE

11

Case Study (2/5): Hypotheses

No Hypothesis

1 Product line code becomes more sustainable by context-specific variability mechanism selection.

2 Except in the short term, code obtained by Cloning is harder to evolve than code with any other 
variability mechanism.

3 In the long term, a monoculture of a variability mechanism is harmful for product line code quality.

4 Runtime variability mechanisms unnecessarily increase product line code complexity.

5 As a variability mechanism, Aspect-Orientation is obsolete.



© Fraunhofer IESE

12

Case Study (3/5): Measurement Results
 -

 
Complexity dimensions (after final evolution step 6)

0

2

4

6

8

10
si ze

shape

emph.

opt i m.

0

0,2

0,4

0,6

0,8

1

1,2
size

shape

emph.

opt im.

a

b

c

d

e

f

g

h

i

Mechanisms:
a: Cloning, b: Cond.Exec., c: Polym., e: Cond.Compil., 
f: Aspect-Or., g: Frame Techn., h: good enough mix, 
i: “ideal”

 

spatial baseline



© Fraunhofer IESE

13

Case Study (4/5): Measurement Results
 -

 
Normalized complexity trends

0

1

2

3

4

5

0 1 2 3 4 5 6
0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 1 2 3 4 5 6

a

b

c

d

e

f

g

h

i

Unweighted average complexity 
(0 = best,
1 = worst, except for Cloning)

Mechanisms:
a: Cloning, b: Cond.Exec., c: Polym., e: Cond.Compil., 
f: Aspect-Or., g: Frame Techn., h: good enough mix, 
i: “ideal”

 

spatial baseline



© Fraunhofer IESE

14

Case Study (5/5): Results

No Hypothesis Supported?

1 Product line code becomes more sustainable by context-specific 
variability mechanism selection.

2 Except in the short term, code obtained by Cloning is harder to evolve 
than code with any other variability mechanism.

(strongly)

3 In the long term, a monoculture of a variability mechanism is harmful 
for product line code quality.

4 Runtime variability mechanisms unnecessarily increase product line 
code complexity.

5 As a variability mechanism, Aspect-Orientation is obsolete.



© Fraunhofer IESE

15

Conclusion

We have developed a method for preventing product line “code aging”, 
consisting of

a pattern language of variability mechanisms

product line evolution scenarios

a method core, consisting of selection, modification and QA phases 
(containing PL complexity measurement as GQM instance)

Vital parts of the method have been validated in a case study

Recommendations

Cloning is useful in short-term evolution, but most detrimantal later

Monocultures and runtime mechanisms lead to over-complexities

A mix of Frame Technology and Conditional Compilation can keep
PL code sufficiently simple in the long term



© Fraunhofer IESE

16

Thank you!


	THE IMPACT OF VARIABILITY MECHANISMS ON SUSTAINABLE PRODUCT LINE CODE EVOLUTION
	OVERVIEW
	Background & Problem:�Product Line Infrastructure Evolution
	Towards a Solution (1/2)
	Towards a Solution (2/2)
	Solution: Product Line Implementation Process
	Main Contributions to Applied Research�in Product Line Engineering
	Product Line Complexity Measurement (1/2): GQM�	- Goals and Questions
	Product Line Complexity Measurement (2/2)�	- Metrics
	Case Study (1/5): Setup
	Case Study (2/5): Hypotheses
	Case Study (3/5): Measurement Results�	- Complexity dimensions (after final evolution step 6)
	Case Study (4/5): Measurement Results�	- Normalized complexity trends
	Case Study (5/5): Results
	Conclusion
	Thank you!

