Indicator-Based Inspections: A Risk-Oriented Quality Assurance Approach for Dependable Systems

Frank Elberzhager

Outline

Motivation & Problem

Idea

Indicator-based Inspection with respect to safety

Conclusion

2

© Fraunhofer IESE

Motivation

Surrounded by evermore software and software-intensive systems

- Some Characteristics
 - Increasing functionality
 - Increasing complexity
 - Have to ensure certain non-functional requirements
 - → Software may cause harm to the environment (number of examples from every domain)
- Challenge: Perform suitable development and quality assurance
 - Number of different techniques exist

Motivation

Some static quality assurance techniques to cover risk

- Risk analysis (Safety)
 - FME(C)A: Identification of failure modes and assessment of criticality
 - FTA: Identification of causes
- Reliability Block Diagrams
- Attack Trees (Security)
- Software Inspections
- Problems
 - Often too coarse-grained analysis
 - Little support to ensure certain quality properties
 - Many different techniques

- Example: Control unit for an electrically-powered car window
 - Focus on demonstration that all safety-related non-acceptable risks have been reduced to an acceptable level

1. Determine concrete quality goals

 For safety, FMECA and FTA can be used to identify safety hazards and causes (high-level analysis)

When an object jams the window while the "window-up" button is pressed, the data from the jam sensor must be correctly received

2. Construct a Goal-Indicator Tree for each quality goal

- Determination of possible correct implementations
- Identification of indicators that ensure a correct implementation

2. Construct a Goal-Indicator Tree for each quality goal

Second and third quality goal:

3. Carry out the inspection

- Available artifacts: Requirements and Matlab Simulink model
- Use the GIT and check each indicator
 - Order: depth first, left to right

- First question: Does a dedicated piece of hardware exist for jam detection?
 - The requirements document describes another realization
 - \rightarrow Question is answered with "no"
 - \rightarrow Indicators below can be skipped

3. Carry out the inspection

- Second subgoal: "Jam detection by motor monitored"
 - Question: Is the motor current monitored?
 - Answer 1: "...when a current is detected that is less than -2.5 A" (requirements)
 - Answer 2: Implementation shows connection from window system to the power window control system

3. Carry out the inspection

- The remaining indicators are also fulfilled, either by a description in the requirements or by the realization in the Matlab Simulink model
- After performing the inspection, the fulfillment of the quality goal has to be checked:
 - Left subgoal "Dedicated jam detection" is not fulfilled
 - Right subgoal "Jam detection by motor current" is fulfilled
 - \rightarrow Due to logical "or" connection, overall goal is fulfilled
- Remark: Enhancement of the reading support possible by derivation of a checklist which presents more detailed support for an inspector

Summary and Outlook

Indicator-based inspection approach to ensure certain quality properties

- Determination of quality goals
- Construction of goal-indicator tree
- Performing the inspection
- Benefit
 - Concrete and detailed support how to reduce risk
 - Improvement of quality
 - Knowledge transfer
- Outlook
 - Application to further quality properties
 - Details on construction
 - Usage of goal-indicator trees to select different quality assurance techniques 12

Thank you! Questions?

Frank Elberzhager (TAI) +49 631 6800 2248 Frank.Elberzhager@iese.fraunhofer.de

© Fraunhofer IESE