
Copyright © Siemens AG 2010. All rights reserved.

Improving Productivity in the Development of
Software-based Systems

SOFTWARE ENGINEERING 2010

February 24, 2010
Paderborn, Germany

Frances Paulisch
Head of the Siemens Software Initiative
Siemens AG, CT T
Munich, Germany

frances.paulisch@siemens.com

© Siemens AG, Corporate TechnologyPage 2 Feb. 24, 2010 Frances Paulisch, Software Initiative

Siemens is an the integrated technology company –
Corporate Technology is an essential part (networking, multiple-impact,…)

Chief Technology
Officer (CTO)

Review innovation
strategies
Drive technology
based synergies
Secure innovation
power
Technology
assessments
Governance and
guidance

Customers

Corporate Intellectual Property
and Functions (CT I)

Intellectual Property services & strategy
Standardization, environmental affairs
Global information research

Corporate Research and
Technologies (CT T)

GTFs with multiple impact
Pictures of the Future
Accelerators

Corporate Technology (CT)

R
eg

io
ns

Sectors / Divisions

Industry Energy Healthcare

Chief Technology
Office (CT O)

Direct support
of CTO

Siemens IT Solutions and Services (SIS)
Siemens Financial Services (SFS)

Corporate Development
Center (CT DC)

Software Development-
partner for the sectors

Page 3 Feb. 24, 2010 © Siemens AG, Corporate TechnologyFrances Paulisch, Software Initiative

… but is usually not recognized as a
“software company” because most of

its software
is embedded in systems

Siemens is one of the World's Largest Software
Companies …

Approximately 20,000 software engineers worldwide
60% of our sales come from products that contain software
Software is an integral part of many of our products and systems

Page 4 Feb. 24, 2010 © Siemens AG, Corporate TechnologyFrances Paulisch, Software Initiative

Outline

Productivity – the eternal quest

Topic-specific views on productivity or return-on-investment
- Requirements Engineering
- Architecture, Product Line Engineering
- Model-Based Software Engineering, Testing
- Agile Development
- People

Lean Software Development

Closing

Page 5 Feb. 24, 2010 © Siemens AG, Corporate TechnologyFrances Paulisch, Software Initiative

Productivity

Output (value)
Productivity =

Input (cost)

Value includes functionality as well as quality
attributes (NFRs) valued by the customer.

Cost includes both direct costs and indirect
costs (that lead to less risk, more predictable
schedule/budget, early warning signs etc.)

Appropriate approach will depend on your
business, organization, project context.

Certainly, you should start with a solid basis.

Page 6 Feb. 24, 2010 © Siemens AG, Corporate TechnologyFrances Paulisch, Software Initiative

Requirements Engineering

Build the right product (have a good understanding of customer, use
prototypes, strive for iterative development).
“The hardest single part of building a software system is deciding
precisely what to build.” – Frederick P. Brooks

Don‘t build too much – beware of “gold plating” and beware of spending effort
implementing features that the customer does not want.
“There is nothing so useless as doing efficiently that which should not be
done at all. “ – Peter Drucker

Pay particular attention to non-functional requirements (NFRs), these are often
overlooked but are very important. Elicit them and realize them in the right order.
“The cheapest, fastest and most reliable components of a computer
system are those that aren't there.” – Gordon Bell

Avoid unnecessary complexity (technical vs. management complexity).
“I have always wished for my computer to be as easy to use as my
telephone; my wish has come true because I can no longer figure out how
to use my telephone.” – Bjarne Stroustrup

Minimize losses at the interfaces.

Page 7 Feb. 24, 2010 © Siemens AG, Corporate TechnologyFrances Paulisch, Software Initiative

Minimize Losses at Horizontal and Vertical
Interfaces

Customer
100%

Marketing / Sales
X%

Product Management
X%*Y%

Development
X%*Y%*Z%

E O

E O R

O R K

X%

Y%

Z%

• Elicitation, organization
and review of
requirements is
performed on each
level separately in
different ways

• Too much loss of
requirements
information from one
level to the next

• Also avoid loss within
levels

E

P

P

P

Plan Requirements Process

Organize Requirements

Keep Requirements up to date

Elicit Requirements

Review Requirements

“Walking on water and developing software from a
specification are easy … if both are frozen.”

– Edward V. Berard

Page 8 Feb. 24, 2010 © Siemens AG, Corporate TechnologyFrances Paulisch, Software Initiative

Architecture and Product Line Engineering

Having an appropriate architecture is key to achieving good productivity.

Build on existing basis where feasible
Be able to recognize when reuse is suitable and when not suitable
Adequate documentation of architecture (e.g. key design principles) so
that others (e.g. those later doing maintenance) can understand the
reasoning.
Avoid complexity where feasible (see next two slides)

“If I had eight hours to chop a tree,
I would use six hours to sharpen the axe.”

– Abraham Lincoln

Page 9 Feb. 24, 2010 © Siemens AG, Corporate TechnologyFrances Paulisch, Software Initiative

The development of large, complex projects tend to
have a much lower productivity than smaller ones

Source: Steve McConnell, www.construx.com

Page 10 Feb. 24, 2010 © Siemens AG, Corporate TechnologyFrances Paulisch, Software Initiative

Two Dimensions of Software Complexity:
Technical and Management (Source: Grady Booch)

Higher technical complexity
- Embedded, real-time, distributed, fault-tolerant
- Custom, unprecedented, architecture reengineering
- High performance

Lower technical complexity
- Mostly 4GL, or component-based
- Application reengineering
- Interactive performance

Higher
management
complexity

- Large scale
- Contractual
- Many stakeholders
- “Projects”

Lower
management
complexity

- Small scale
- Informal
- Single stakeholder
- “Products”

Defense
MIS System

Defense
Weapon SystemTelecom

Switch

CASE Tool

National Air Traffic
Control System

Enterprise IS
(Family of IS
Applications)

Commercial
Compiler

Business
Spreadsheet

IS Application
Distributed Objects

(Order Entry)

Small Scientific
Simulation

Large-Scale
Organization/Entity

Simulation

Embedded
Automotive

Software

IS Application
GUI/RDB

(Order Entry)
“There are two ways of constructing
a software design; one way is to make
it so simple that there are obviously
no deficiencies, and the other way is
to make it so complicated that there
are no obvious deficiencies. The first
method is far more difficult.”

– C.A.R. (Tony) Hoare

Page 11 Feb. 24, 2010 © Siemens AG, Corporate TechnologyFrances Paulisch, Software Initiative

Product Line Engineering (PLE)

Product line engineering is an approach for optimizing economic benefits through
the pro-active, constructive reuse of assets for customer-specific
products/solutions. The aim is to increase product quality and decrease
development effort and cost by exploiting commonality among products/solutions.

business
platform
(core assets)

Productsproduct/
solution

Productproduct/
solution

application
derivation

architecture,
reusable

components

supporting
assets

product
specific
assets

platform goals

portfolio goals

production
plan

Page 12 Feb. 24, 2010 © Siemens AG, Corporate TechnologyFrances Paulisch, Software Initiative

Sample business drivers for
Product Line Engineering

Page 13 Feb. 24, 2010 © Siemens AG, Corporate TechnologyFrances Paulisch, Software Initiative

Model-driven Software Engineering

Take advantage of using higher level of abstraction (increased efficiency,
fewer errors, clear basis for discussion with customer etc.)
Take advantage of automation, e.g. test automation
Model-based testing

1. The effort spent in creating the first models to derive test cases automatically is
roughly the same as if one created the test cases manually

2. During the creation of the models often errors are detected in the requirement
specification

3. The investment is small compared to the benefit of finding the defects.

Page 14 Feb. 24, 2010 © Siemens AG, Corporate TechnologyFrances Paulisch, Software Initiative

Agile Development

Business Impacts
Strong focus on business value for the customer
Predictable time to market through time-boxed, short iterations
Improved customer satisfaction, stronger ability to incorporate early and
continuous customer feedback
Higher motivation of engineering teams through trust and ability to self-organize
Better estimation accuracy through repeated planning activities on different
levels of granularity
Improved quality through test-driven development and continuous integration
Possibility to launch an early release to the marketplace
More team productivity and stability through cross-functional and self-organizing
teams who continuously improve their way of work
Allows the teams to focus clearly on the short-term goals (the “sprint”) and
protects from distractions
Has much more ability than a waterfall approach to allow changes (backlog)

“There's no point in being exact about something, if you don't even know
what you're talking about” – John von Neumann

Page 15 Feb. 24, 2010 © Siemens AG, Corporate TechnologyFrances Paulisch, Software Initiative

People

Recent HBR Study by Amabile/Kramer entitled “What really motivates
workers” shows that among the 5 factors (recognition, incentives, interpersonal
support, making progress, clear goals) the key for knowledge workers is not
recognition, but making progress.

Avoid “silo” thinking (e.g. throwing requirements “over the wall” to developers)
but instead work together truly as a team

Encourage trust and empower teams.
Literature Summary in July/August 2008 issue of “IEEE Software”

(http: www. computer.org/software) entitled “What Do We Know about Developer
Motivation?” showed list of motivating factors and states:.“…Managers must
provide challenging problem-solving tasks, explicitly recognize quality work,
and give developers autonomy to do their jobs.”
It also points out that recent trends in software engineering (agile development,
global development) make the human aspects increasingly important.

Page 16 Feb. 24, 2010 © Siemens AG, Corporate TechnologyFrances Paulisch, Software Initiative

Influence Factors broken down by levels.
People and Teamwork are a very important factors

Page 17 Feb. 24, 2010 © Siemens AG, Corporate TechnologyFrances Paulisch, Software Initiative

Lean Software Development
“Think Big, Act Small, Fail Fast, Learn Rapidly”

We need a holistic view, not only individual improvements.
A modern approach needs a holistic view on the value chain
throughout the entire lifecycle and across organizational structures
as well as the integration of partners
Identify and eliminate “waste” as a means to increase “productivity”
A cross-functional approach generates new perspectives for
optimization.
Strong connection of principles and methods to the employees.
We need a sustainable culture change.

“Do the right things and do them right” implies a mix of not only
customer pull (as is common in lean), but also technology push.

Lean in development is significantly different from lean in manufacturing

Page 18 Feb. 24, 2010 © Siemens AG, Corporate TechnologyFrances Paulisch, Software Initiative

Lean Software Development is about flow of
information/decisions

Source: Alistair Cockburn, Keynote Agile 2009

Page 19 Feb. 24, 2010 © Siemens AG, Corporate TechnologyFrances Paulisch, Software Initiative

Lean Software Development, Key Concepts

Eliminate waste
Activities that consume resources, but do not result in
generation of customer value are called “waste”.
Waste can be further split into "necessary waste" and
(unnecessary) "pure waste". Especially avoid pure waste.

Build quality in from the start, not test it in later.
When a defect is found, stop the line, find its cause, and fix it.

The development process must encourage systematic learning but
we also need to systematically improve that process.

Schedule irreversible decisions for the last possible moment, when
much information is available.

It is not the biggest that survives, but the fastest. Speed is gained by
achieving continuous flow and demand-driven development (pull).

Find an entrepreneurial leader and an expert technical workforce
and let them do their own job. Managers respect the people and
provide support.

Optimize the whole “concept to cash” chain, not local “silos”.

Create knowledge

Defer commitment

Build quality in

Respect People

Optimize the Whole

Deliver fast

Page 20 Feb. 24, 2010 © Siemens AG, Corporate TechnologyFrances Paulisch, Software Initiative

Lean Software Development: Types of “Waste”
(activities that consume resources, but do not result in
generation of customer value.)

Waiting: e.g. through unclear responsibilities, insufficient process/tool
integration, lack of parallelization, insufficient infrastructure (e.g.
computer/network too slow)
Over-Processing: unnecessary or too-detailed process steps
Defects: Re-work (i.e. having to do an activity a second time, for example due to
finding defects or inadequate involvement of all relevant stakeholders)
Transportation: Inadequate transportation of information across interfaces (e.g.
manual transfer of information between roles due to incompatible processes or
tools, lack of common understanding, hunting for information)
Over-Production: e.g. delivery of features that the customer does not need,
overly-complex products, too many variants instead of doing systematic reuse
Inventory: creation of artifacts that are not used downstream (e.g. effort invested
in the definition, effort estimation, review of requirements or features that are not
realized)
Motion: unnecessary transfer of persons due to inadequate relationship between
the roles (e.g. lack of direct access to necessary information, having to multi-task
between too many projects, insufficient communication between sites).

Page 21 Feb. 24, 2010 © Siemens AG, Corporate TechnologyFrances Paulisch, Software Initiative

Closing Words / Guiding Principles

Summary of most of the guiding principles.
These are also part of our “Software
Curriculum” project (paper at ICSE 2010).

1. Architecture is the key throughout the whole lifecycle as well as across releases.
2. Structure the system to avoid unnecessary complexity, and to actively enable

and support multi-site development
3. Build on existing basis where feasible and be able to recognize when such re-

use is not suitable
4. Strive for transparency, clear well-grounded decisions
5. The product manager must act as the owner of the main requirements
6. Pay particular attention to non-functional requirements (NFRs),
7. Be prepared and able to handle changing requirements, but be aware about the

risk of late changes
8. Work iteratively, strive to identify and resolve technical and business risks early
9. Work together truly as a team, avoid “silo” thinking, be willing and able to speak

and understand the other roles and disciplines
10. Do not underestimate the importance of soft skills, these are of great and

growing importance. (Real) communication is key (especially for large projects).

ICSE 2010, May 2-8, 2010
Cape Town, South Africa

http://www.sbs.co.za/ICSE2010/

Page 22 Feb. 24, 2010 © Siemens AG, Corporate TechnologyFrances Paulisch, Software Initiative

Thanks for your attention.
Questions?

	Improving Productivity in the Development of Software-based Systems��SOFTWARE ENGINEERING 2010��February 24, 2010�Paderborn, Germany
	Siemens is an the integrated technology company – �Corporate Technology is an essential part (networking, multiple-impact,…)
	Siemens is one of the World's Largest Software Companies …
	Outline
	Productivity
	Requirements Engineering
	�Minimize Losses at Horizontal and Vertical Interfaces
	Architecture and Product Line Engineering
	The development of large, complex projects tend to have a much lower productivity than smaller ones
	Two Dimensions of Software Complexity: �Technical and Management (Source: Grady Booch)
	Product Line Engineering (PLE)
	Sample business drivers for �Product Line Engineering
	Model-driven Software Engineering
	Agile Development
	People
	Influence Factors broken down by levels.�People and Teamwork are a very important factors
	Lean Software Development�“Think Big, Act Small, Fail Fast, Learn Rapidly”
	Lean Software Development is about flow of�information/decisions
	Lean Software Development, Key Concepts
	Lean Software Development: Types of “Waste” (activities that consume resources, but do not result in generation of customer value.)
	Closing Words / Guiding Principles
	Thanks for your attention.�Questions?

